NASAโ€™s Roman mission gears up for a torrent of future data

NASA's Roman mission prepares for a torrent of future data

by Ashley Balzer for GSFC News

Greenbelt MD (SPX) October 11, 2023






NASA's Nancy Grace Roman Space Telescope team is exploring ways to support community efforts that will prepare for the avalanche of data the mission will return. The newly selected infrastructure teams will play a vital role in the groundwork by creating simulations, scanning the skies with other telescopes, calibrating Roman's components, and much more.

Their work will complement the additional efforts of other teams and individuals around the world, who will join forces to maximize Roman's scientific potential. The goal is to ensure that when the mission launches in May 2027, scientists already have the tools they need to discover billions of cosmic objects and help unravel mysteries such as dark energy.

"We're leveraging the broader scientific community to lay the groundwork so that when we get to launch we can do powerful science from the start," said Julie McEnery, Roman's principal project scientist at NASA's Goddard Space Flight. Center in Greenbelt, Maryland. "There is a lot of exciting work to do and a lot of different ways scientists can get involved."

Simulations form the core of the preparatory efforts. They allow scientists to test algorithms, estimate Roman's scientific performance, and refine observation strategies so that we learn everything we can about the universe.

Teams will be able to spread different cosmic phenomena across a simulated data set and then run machine learning algorithms to see how well they can find the phenomena automatically. Developing quick and efficient ways to identify underlying patterns will be vital given Roman's enormous data collection rate. The mission is expected to accumulate 20,000 terabytes (20 petabytes) of observations containing trillions of individual measurements of stars and galaxies over the course of its five-year primary mission.

"The prep work is complex, in part because everything Roman will do is quite interconnected," McEnery said. "Each observation will be used by multiple teams for very different scientific cases, so we are creating an environment that makes it as easy as possible for scientists to collaborate."

Some scientists will make pioneering observations using other telescopes, including NASA's Hubble Space Telescope, Keck Observatory in Hawaii, and Japan's PRIME (Primary Focus Infrared Microlensing Experiment) located at the South African Astronomical Observatory in Sutherland. These observations will help astronomers optimize Roman's observing plan by identifying the best individual targets and regions of space for Roman and better understand the data the mission is expected to provide.

Some teams will explore how they could combine data from different observatories and use multiple telescopes together. For example, using PRIME and Roman together would help astronomers learn more about objects found in warped spacetime. And Roman scientists will be able to rely on archived Hubble data to look back in time and see where cosmic objects were and how they behaved, building a more complete history of the objects that Roman astronomers will use to study. Roman will also identify interesting targets that observatories like NASA's James Webb Space Telescope can zoom in for more detailed studies.

Many teams will be needed working in parallel to plan each Roman scientific case. "Scientists can take something that Roman will explore, like faint streams of stars that extend far beyond the apparent edges of many galaxies, and consider all the things needed to study them really well," said Dominic Benford, a scientist with Roman's program. at NASA headquarters in Washington, D.C. "That could include algorithms for faint objects, developing ways to measure the positions of stars very precisely, understanding how the effects of detectors could influence observations and knowing how to correct them, devising the most effective strategy for imaging stellar streams and much more."

One group is developing processing and analysis software for Roman's coronagraph instrument. This instrument will demonstrate several cutting-edge technologies that could help astronomers directly image planets beyond our solar system. This equipment will also simulate different objects and planetary systems that the Coronagraph could reveal, from dusty disks surrounding stars to cold, old worlds similar to Jupiter.

The mission's science centers are preparing to manage Roman's data pipeline and archive and establish systems to plan and execute observations. As part of a separate upcoming effort, they will convene a survey definition team that will take all the preparatory information that scientists are now generating and all the interests of the astronomical community at large to determine in detail the optimal observing plans for Roman.

"The team hopes to coordinate and channel all of the preliminary work," McEnery said. "It's a challenging but also exciting opportunity to set the stage for Roman and ensure that each of our future observations of him contributes to a wealth of scientific discoveries."


related links

Nancy Grace Roman Space Telescope

Space Technology News: Applications and Research


Leave a Comment

Comments

No comments yet. Why donโ€™t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *